Linear Equations
gauss-jordan elimination
Credit Siyang Chen
/**
* solves A*X=b
* @param A coefficients
* @param b constants
* @return values of the variables
*/
public double[] linearEquationSolve( double[][] A, double[] b ){
double EPS=.000001;//or whatever you need it to be
int n = A.length;
double a[][] = new double[n][n+1], temp[], scale;
for( int i = 0; i < n; i++ ) for( int j = 0; j < n; j++ ) a[i][j] = A[i][j];
for( int i = 0; i < n; i++ ) a[i][n] = b[i];
for( int i = 0; i < n; i++ ){
for( int j = i; j < n; j++ )if( Math.abs(a[j][i])>EPS ){
temp = a[j];
a[j] = a[i];
a[i] = temp;
break;
}
scale = 1/a[i][i];
for( int j = i; j <= n; j++ ) a[i][j] *= scale;
for( int j = 0; j < n; j++ )if( i != j && Math.abs(a[j][i])>EPS ){
scale = -a[j][i];
for( int k = i; k <= n; k++ ) a[j][k] += scale*a[i][k];
}
}
double[] x = new double[n];
for( int i = 0; i < n; i++ ) x[i] = a[i][n];
return x;
}
determinant
This was a clever way to do this...it's recursion with memoization, where somehow mask represents a subproblem and the solution is stored in dp. Mask represents the already used columns, and thus implicitly defines the minor matrix for which we're calculating the determinant
/**
* finds the determinant of the input matrix
* @param d the input matrix
* @param row 0 to start with
* @param mask 0 to start with
* @param dp -1 filled array of the same length as ((1<<d.length)-1)
* @return the value of the determinant
*/
public long det(int[][] d, int row, int mask, long[] dp) {
if(row == d.length)return 1;
if(dp[mask]>0)return dp[mask];
int sign=1;
long ans=0;
for(int i=0;i<d.length;i++){
if(((mask>>i)&1)==0){
ans+=sign*d[row][i]*det(d,row+1,mask|(1<<i),dp);
sign*=-1;
}
}
dp[mask]=ans;
return ans;
}